PLoS Neglected Tropical Diseases News

Subscribe to PLoS Neglected Tropical Diseases News feed PLoS Neglected Tropical Diseases News
A Peer-Reviewed Open-Access Journal
Updated: 1 day 14 min ago

Could violent conflict derail the London Declaration on NTDs?

19 April 2018 - 9:00pm

by Rebecca Y. Du, Jeffrey D. Stanaway, Peter J. Hotez

Activation of host transient receptor potential (TRP) channels by praziquantel stereoisomers

18 April 2018 - 9:00pm

by Gihan S. Gunaratne, Nawal Yahya, Peter I. Dosa, Jonathan S. Marchant

The anthelmintic praziquantel (±PZQ) serves as a highly effective antischistosomal therapy. ±PZQ causes a rapid paralysis of adult schistosome worms and deleterious effects on the worm tegument. In addition to these activities against the parasite, ±PZQ also modulates host vascular tone in blood vessels where the adult worms reside. In resting mesenteric arteries ±PZQ causes a constriction of basal tone, an effect mediated by (R)-PZQ activation of endogenous serotoninergic G protein coupled receptors (GPCRs). Here, we demonstrate a novel vasodilatory action of ±PZQ in mesenteric vessels that are precontracted by high potassium-evoked depolarization, an effect previously reported to be associated with agonists of the transient receptor potential melastatin 8 channel (TRPM8). Pharmacological profiling a panel of 17 human TRPs demonstrated ±PZQ activity against a subset of human TRP channels. Several host TRP channels (hTRPA1, hTRPC3, hTRPC7) were activated by both (R)-PZQ and (S)-PZQ over a micromolar range whereas hTRPM8 showed stereoselective activation by (S)-PZQ. The relaxant effect of ±PZQ in mesenteric arteries was caused by (S)-PZQ, not (R)-PZQ, and mimicked by TRPM8 agonists. However, persistence of both (S)-PZQ and TRPM8 agonist evoked vessel relaxation in TRPM8 knockout tissue suggested that canonical TRPM8 does not mediate this (S)-PZQ effect. We conclude that (S)-PZQ is vasoactive over the micromolar range in mesenteric arteries although the molecular mediators of this effect remain to be identified. These data expand our knowledge of the polypharmacology and host vascular efficacy of this clinically important anthelmintic.

Establishment of a mouse model for the complete mosquito-mediated transmission cycle of Zika virus

18 April 2018 - 9:00pm

by Yi-Ping Kuo, Kuen-Nan Tsai, Yin-Chiu Luo, Pei-Jung Chung, Yu-Wen Su, Yu Teng, Ming-Sian Wu, Yu-Feng Lin, Chao-Yang Lai, Tsung-Hsien Chuang, Shih-Syong Dai, Fan-Chen Tseng, Cheng-Han Hsieh, De-Jiun Tsai, Wan-Ting Tsai, Chun-Hong Chen, Guann-Yi Yu

Zika virus (ZIKV) is primarily transmitted by Aedes mosquitoes in the subgenus Stegomyia but can also be transmitted sexually and vertically in humans. STAT1 is an important downstream factor that mediates type I and II interferon signaling. In the current study, we showed that mice with STAT1 knockout (Stat1-/-) were highly susceptible to ZIKV infection. As low as 5 plaque-forming units of ZIKV could cause viremia and death in Stat1-/- mice. ZIKV replication was initially detected in the spleen but subsequently spread to the brain with concomitant reduction of the virus in the spleen in the infected mice. Furthermore, ZIKV could be transmitted from mosquitoes to Stat1-/- mice back to mosquitoes and then to naïve Stat1-/- mice. The 50% mosquito infectious dose of viremic Stat1-/- mouse blood was close to 810 focus-forming units (ffu)/ml. Our further studies indicated that the activation of macrophages and conventional dendritic cells were likely critical for the resolution of ZIKV infection. The newly developed mouse and mosquito transmission models for ZIKV infection will be useful for the evaluation of antiviral drugs targeting the virus, vector, and host.

Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion

18 April 2018 - 9:00pm

by Prakash Babu Narasimhan, Leor Akabas, Sameha Tariq, Naureen Huda, Sasisekhar Bennuru, Helen Sabzevari, Robert Hofmeister, Thomas B. Nutman, Roshanak Tolouei Semnani

A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi–a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, and TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

Genetic profiling of <i>Mycobacterium bovis</i> strains from slaughtered cattle in Eritrea

17 April 2018 - 9:00pm

by Michael Kahsay Ghebremariam, Tiny Hlokwe, Victor P. M. G. Rutten, Alberto Allepuz, Simeon Cadmus, Adrian Muwonge, Suelee Robbe-Austerman, Anita L. Michel

Mycobacterium bovis (M.bovis) is the main causative agent for bovine tuberculosis (BTB) and can also be the cause of zoonotic tuberculosis in humans. In view of its zoonotic nature, slaughterhouse surveillance, potentially resulting in total or partial condemnation of the carcasses and organs, is conducted routinely.Spoligotyping, VNTR profiling, and whole genome sequencing (WGS)ofM. bovis isolated from tissues with tuberculosis-like lesions collected from 14 cattle at Eritrea’s largest slaughterhouse in the capital Asmara, were conducted.The 14 M. bovisisolates were classified into three different spoligotype patterns (SB0120, SB0134 and SB0948) and six VNTR profiles. WGSresults matched those of the conventional genotyping methodsand further discriminatedthe six VNTR profiles into 14 strains.Furthermore, phylogenetic analysis of the M. bovisisolates suggests two independent introductions of BTB into Eritrea possibly evolving from a common ancestral strain in Europe.This molecular study revealed the most important strains of M. bovis in Eritrea and their (dis)similarities with the strains generally present in East Africa and Europe, as well as potential routes of introduction of M. bovis. Though the sample size is small, the current study provides important information as well as platform for future in-depth molecular studies on isolates from both the dairy and the traditional livestock sectors in Eritrea and the region. This study provides information onthe origin of some of the M. bovis strains in Eritrea, its genetic diversity, evolution and patterns of spread between dairy herds. Such information is essential in the development and implementation of future BTB control strategy for Eritrea.

Body lice of homeless people reveal the presence of several emerging bacterial pathogens in northern Algeria

17 April 2018 - 9:00pm

by Meriem Louni, Nassima Mana, Idir Bitam, Mustapha Dahmani, Philippe Parola, Florence Fenollar, Didier Raoult, Oleg Mediannikov

Background

Human lice, Pediculus humanus, are obligate blood-sucking parasites. Body lice, Pediculus h. humanus, occur in two divergent mitochondrial clades (A and D) each exhibiting a particular geographic distribution. Currently, the body louse is recognized as the only vector for louse-borne diseases. In this study, we aimed to study the genetic diversity of body lice collected from homeless populations in three localities of northern Algeria, and to investigate louse-borne pathogens in these lice.

Methodology/Principal findings

In this study, 524 body lice specimens were collected from 44 homeless people in three localities: Algiers, Tizi Ouzou and Boumerdès located in northern Algeria. Duplex clade specific real-time PCRs (qPCR) and Cytochrome b (cytb) mitochondrial DNA (mtDNA) analysis were performed in order to identify the mitochondrial clade. Screening of louse-borne pathogens bacteria was based on targeting specific genes for each pathogen using qPCR supplemented by sequencing. All body lice belong to clade A. Through amplification and sequencing of the cytb gene we confirmed the presence of three haplotypes: A5, A9 and A63, which is novel. The molecular investigation of the 524 body lice samples revealed the presence of four human pathogens: Bartonella quintana (13.35%), Coxiella burnetii (10.52%), Anaplasma phagocytophilum (0.76%) and Acinetobacter species (A. baumannii, A. johnsonii, A. berezeniae, A. nosocomialis and A. variabilis, in total 46.94%).

Conclusions/Significance

To the best of our knowledge, our study is the first to show the genetic diversity and presence of several emerging pathogenic bacteria in homeless’ body lice from Algeria. We also report for the first time, the presence of several species of Acinetobacter in human body lice. Our results highlight the fact that body lice may be suspected as being a much broader vector of several pathogenic agents than previously thought. Nevertheless, other studies are needed to encourage epidemiological investigations and surveys of louse-associated infections.

Profiling extracellular vesicle release by the filarial nematode <i>Brugia malayi</i> reveals sex-specific differences in cargo and a sensitivity to ivermectin

16 April 2018 - 9:00pm

by Hiruni Harischandra, Wang Yuan, Hannah J. Loghry, Mostafa Zamanian, Michael J. Kimber

The filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV) containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage B. malayi and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms). Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. Brugia EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of Brugia EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all Brugia life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm Dirofilaria immitis but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development.

<i>In vitro</i> assessment of cytotoxic activities of <i>Lachesis muta muta</i> snake venom

16 April 2018 - 9:00pm

by Stephanie Stransky, Fernanda Costal-Oliveira, Letícia Lopes-de-Souza, Clara Guerra-Duarte, Carlos Chávez-Olórtegui, Vania Maria Martin Braga

Envenomation by the bushmaster snake Lachesis muta muta is considered severe, characterized by local effects including necrosis, the main cause of permanent disability. However, cellular mechanisms related to cell death and tissue destruction, triggered by snake venoms, are poorly explored. The purpose of this study was to investigate the cytotoxic effect caused by L. m. muta venom in normal human keratinocytes and to identify the cellular processes involved in in cellulo envenomation. In order to investigate venom effect on different cell types, Alamar Blue assay was performed to quantify levels of cellular metabolism as a readout of cell viability. Apoptosis, necrosis and changes in mitochondrial membrane potential were evaluated by flow cytometry, while induction of autophagy was assessed by expression of GFP-LC3 and analyzed using fluorescence microscopy. The cytotoxic potential of the venom is shown by reduced cell viability in a concentration-dependent manner. It was also observed the sequential appearance of cells undergoing autophagy (by 6 hours), apoptosis and necrosis (12 and 24 hours). Morphologically, incubation with L. m. muta venom led to a significant cellular retraction and formation of cellular aggregates. These results indicate that L. m. muta venom is cytotoxic to normal human keratinocytes and other cell lines, and this toxicity involves the integration of distinct modes of cell death. Autophagy as a cell death mechanism, in addition to apoptosis and necrosis, can help to unravel cellular pathways and mechanisms triggered by the venom. Understanding the mechanisms that underlie cellular damage and tissue destruction will be useful in the development of alternative therapies against snakebites.

The impact of school water, sanitation, and hygiene improvements on infectious disease using serum antibody detection

16 April 2018 - 9:00pm

by Anna N. Chard, Victoria Trinies, Delynn M. Moss, Howard H. Chang, Seydou Doumbia, Patrick J. Lammie, Matthew C. Freeman

Background

Evidence from recent studies assessing the impact of school water, sanitation and hygiene (WASH) interventions on child health has been mixed. Self-reports of disease are subject to bias, and few WASH impact evaluations employ objective health measures to assess reductions in disease and exposure to pathogens. We utilized antibody responses from dried blood spots (DBS) to measure the impact of a school WASH intervention on infectious disease among pupils in Mali.

Methodology/Principal findings

We randomly selected 21 beneficiary primary schools and their 21 matched comparison schools participating in a matched-control trial of a comprehensive school-based WASH intervention in Mali. DBS were collected from 20 randomly selected pupils in each school (n = 807). We analyzed eluted IgG from the DBS using a Luminex multiplex bead assay to 28 antigens from 17 different pathogens. Factor analysis identified three distinct latent variables representing vector-transmitted disease (driven primarily by dengue), food/water-transmitted enteric disease (driven primarily by Escherichia coli and Vibrio cholerae), and person-to-person transmitted enteric disease (driven primarily by norovirus). Data were analyzed using a linear latent variable model. Antibody evidence of food/water-transmitted enteric disease (change in latent variable mean (β) = -0.24; 95% CI: -0.53, -0.13) and person-to-person transmitted enteric disease (β = -0.17; 95% CI: -0.42, -0.04) was lower among pupils attending beneficiary schools. There was no difference in antibody evidence of vector-transmitted disease (β = 0.11; 95% CI: -0.05, 0.33).

Conclusions/Significance

Evidence of enteric disease was lower among pupils attending schools benefitting from school WASH improvements than students attending comparison schools. These findings support results from the parent study, which also found reduced incidence of self-reported diarrhea among pupils of beneficiary schools. DBS collection was feasible in this resource-poor field setting and provided objective evidence of disease at a low cost per antigen analyzed, making it an effective measurement tool for the WASH field.

Trial registration

The trial was registered at ClinicalTrials.gov (NCT01787058)

Replication-incompetent rabies virus vector harboring glycoprotein gene of lymphocytic choriomeningitis virus (LCMV) protects mice from LCMV challenge

16 April 2018 - 9:00pm

by Mutsuyo Takayama-Ito, Chang-Kweng Lim, Yukie Yamaguchi, Guillermo Posadas-Herrera, Hirofumi Kato, Itoe Iizuka, Md. Taimur Islam, Kinjiro Morimoto, Masayuki Saijo

Background

Lymphocytic choriomeningitis virus (LCMV) causes a variety of diseases, including asymptomatic infections, meningitis, and congenital infections in the fetus of infected mother. The development of a safe and effective vaccine against LCMV is imperative. This study aims to develop a new candidate vaccine against LCMV using a recombinant replication-incompetent rabies virus (RV) vector.

Methodology/Principal findings

In this study, we have generated a recombinant deficient RV expressing the LCMV glycoprotein precursor (GPC) (RVΔP-LCMV/GPC) which is lacking the RV-P gene. RVΔP-LCMV/GPC is able to propagate only in cells expressing the RV-P protein. In contrast, the LCMV-GPC can be expressed in general cells, which do not express RV-P protein. The ability of RVΔP-LCMV/GPC to protect mice from LCMV infection and induce cellular immunity was assessed. Mice inoculated intraperitoneally with RVΔP-LCMV/GPC showed higher survival rates (88.2%) than those inoculated with the parental recombinant RV-P gene-deficient RV (RVΔP) (7.7%) following a LCMV challenge. Neutralizing antibody (NAb) against LCMV was not induced, even in the sera of surviving mice. CD8+ T-cell depletion significantly reduced the survival rates of RVΔP-LCMV/GPC-inoculated mice after the LCMV challenge. These results suggest that CD8+ T cells play a major role in the observed protection against LCMV. In contrast, NAbs against RV were strongly induced in sera of mice inoculated with either RVΔP-LCMV/GPC or RVΔP. In safety tests, suckling mice inoculated intracerebrally with RVΔP-LCMV/GPC showed no symptoms.

Conclusions/Significance

These results show RVΔP-LCMV/GPC might be a promising candidate vaccine with dual efficacy, protecting against both RV and LCMV.

The non-linear and lagged short-term relationship between rainfall and leptospirosis and the intermediate role of floods in the Philippines

16 April 2018 - 9:00pm

by Naohiko Matsushita, Chris Fook Sheng Ng, Yoonhee Kim, Motoi Suzuki, Nobuo Saito, Koya Ariyoshi, Eumelia P. Salva, Efren M. Dimaano, Jose B. Villarama, Winston S. Go, Masahiro Hashizume

Background

Leptospirosis is a worldwide bacterial zoonosis. Outbreaks of leptospirosis after heavy rainfall and flooding have been reported. However, few studies have formally quantified the effect of weather factors on leptospirosis incidence. We estimated the association between rainfall and leptospirosis cases in an urban setting in Manila, the Philippines, and examined the potential intermediate role of floods in this association.

Methods/Principal findings

Relationships between rainfall and the weekly number of hospital admissions due to leptospirosis from 2001 to 2012 were analyzed using a distributed lag non-linear model in a quasi-Poisson regression framework, controlling for seasonally varying factors other than rainfall. The role of floods on the rainfall–leptospirosis relationship was examined using an indicator. We reported relative risks (RRs) by rainfall category based on the flood warning system in the country. The risk of post-rainfall leptospirosis peaked at a lag of 2 weeks (using 0 cm/week rainfall as the reference) with RRs of 1.30 (95% confidence interval: 0.99–1.70), 1.53 (1.12–2.09), 2.45 (1.80–3.33), 4.61 (3.30–6.43), and 13.77 (9.10–20.82) for light, moderate, heavy, intense and torrential rainfall (at 2, 5, 16, 32 and 63 cm/week), respectively. After adjusting for floods, RRs (at a lag of 2 weeks) decreased at higher rainfall levels suggesting that flood is on the causal pathway between rainfall and leptospirosis.

Conclusions

Rainfall was strongly associated with increased hospital admission for leptospirosis at a lag of 2 weeks, and this association was explained in part by floods.

Sialome diversity of ticks revealed by RNAseq of single tick salivary glands

13 April 2018 - 9:00pm

by Jan Perner, Sára Kropáčková, Petr Kopáček, José M. C. Ribeiro

Ticks salivate while feeding on their hosts. Saliva helps blood feeding through host anti-hemostatic and immunomodulatory components. Previous transcriptomic and proteomic studies revealed the complexity of tick saliva, comprising hundreds of polypeptides grouped in several multi-genic families such as lipocalins, Kunitz-domain containing peptides, metalloproteases, basic tail secreted proteins, and several other families uniquely found in ticks. These studies also revealed that the composition of saliva changes with time; expression of transcripts from the same family wax and wane as a function of feeding time. Here, we examined whether host immune factors could influence sialome switching by comparing sialomes of ticks fed naturally on a rabbit, to ticks artificially fed on defibrinated blood depleted of immune components. Previous studies were based on transcriptomes derived from pools of several individuals. To get an insight into the uniqueness of tick sialomes, we performed transcriptomic analyses of single salivary glands dissected from individual adult female I. ricinus ticks. Multivariate analysis identified 1,279 contigs differentially expressed as a function of time and/or feeding mode. Cluster analysis of these contigs revealed nine clusters of differentially expressed genes, four of which appeared consistently across several replicates, but five clusters were idiosyncratic, pointing to the uniqueness of sialomes in individual ticks. The disclosure of tick quantum sialomes reveals the unique salivary composition produced by individual ticks as they switch their sialomes throughout the blood meal, a possible mechanism of immune evasion.

Insulin receptor knockdown blocks filarial parasite development and alters egg production in the southern house mosquito, <i>Culex quinquefasciatus</i>

12 April 2018 - 9:00pm

by Andrew Bradley Nuss, Mark R. Brown, Upadhyayula Suryanarayana Murty, Monika Gulia-Nuss

Lymphatic filariasis, commonly known as elephantiasis, is a painful and profoundly disfiguring disease. Wuchreria bancrofti (Wb) is responsible for >90% of infections and the remainder are caused by Brugia spp. Mosquitoes of the genera Culex (in urban and semi-urban areas), Anopheles (in rural areas of Africa and elsewhere), and Aedes (in Pacific islands) are the major vectors of W. bancrofti. A preventive chemotherapy called mass drug administration (MDA), including albendazole with ivermectin or diethylcarbamazine citrate (DEC) is used in endemic areas. Vector control strategies such as residual insecticide spraying and long-lasting insecticidal nets are supplemental to the core strategy of MDA to enhance elimination efforts. However, increasing insecticide resistance in mosquitoes and drug resistance in parasite limit the effectiveness of existing interventions, and new measures are needed for mosquito population control and disruption of mosquito-parasite interactions to reduce transmission. Mosquito insulin signaling regulates nutrient metabolism and has been implicated in reduced prevalence and intensity of malaria parasite, Plasmodium falciparum, infection in mosquitoes. Currently no data are available to assess how insulin signaling in mosquitoes affects the development of multi-cellular parasites, such as filarial nematodes. Here, we show that insulin receptor knockdown in blood fed C. quinquefasciatus, the major vector of Wb in India, completely blocks the development of filarial nematode parasite to the infective L3 stage, and results in decreased ecdysteroid production and trypsin activity leading to fewer mosquito eggs. These data indicate that a functional mosquito insulin receptor (IR) is necessary for filarial parasite development and mosquito reproduction. Therefore, insulin signaling may represent a new target for the development of vector control or parasite blocking strategies.

Serosurveillance of Coxiellosis (Q-fever) and Brucellosis in goats in selected provinces of Lao People’s Democratic Republic

12 April 2018 - 9:00pm

by Rebekah J. L. Burns, Bounlom Douangngeun, Watthana Theppangna, Syseng Khounsy, Mavuto Mukaka, Paul W. Selleck, Eric Hansson, Matthew D. Wegner, Peter A. Windsor, Stuart D. Blacksell

Goat raising is a growing industry in Lao People’s Democratic Republic, with minimal disease investigation to date especially zoonoses. This study determined the proportional seropositivity of two zoonotic diseases: Q fever (causative agent Coxiella burnetii) and Brucellosis (Brucella species) in goats across five provinces (Vientiane Capital, Xayaboury, Xiengkhuang, Savannakhet and Attapeu). A total of 1458 goat serum samples were tested using commercial indirect ELISA for both pathogens, plus Rose Bengal agglutination test for Brucellosis. Overall individual seropositivity of C. burnetii was 4.1% and Brucella spp. was 1.4%. A multiple logistic regression model identified that province (Vientiane Capital, p = 0.05), breed (introduced Boer mixed breed, p = 0.006) and age (goats ≥3 years old, p = 0.014) were significant risk factors for C. burnetii seropositivity. The results of the survey indicated that province (Vientiane Capital, p<0.001), breed (introduced Boer mixed breed, p<0.001), production system (commercial, p<0.001), age (adult, p = 0.004), and farm size (large, 0.001) were all significant risk factors seropositivity for Brucella spp. It was concluded that Lao goats have been exposed to both C. burnetii and Brucella spp. however the risk of clinical disease has not yet been determined and there is an urgent need to determine human health risks and economic losses caused by Q fever and Brucellosis.

Gene target selection for loop-mediated isothermal amplification for rapid discrimination of <i>Treponema pallidum</i> subspecies

12 April 2018 - 9:00pm

by Sascha Knauf, Simone Lüert, David Šmajs, Michal Strouhal, Idrissa S. Chuma, Sieghard Frischmann, Mohammed Bakheit

We show proof of concept for gene targets (polA, tprL, and TP_0619) that can be used in loop-mediated isothermal amplification (LAMP) assays to rapidly differentiate infection with any of the three Treponema pallidum subspecies (pallidum (TPA), pertenue (TPE), and endemicum (TEN)) and which are known to infect humans and nonhuman primates (NHPs). Four TPA, six human, and two NHP TPE strains, as well as two human TEN strains were used to establish and validate the LAMP assays. All three LAMP assays were highly specific for the target DNA. Amplification was rapid (5–15 min) and within a range of 10E+6 to 10E+2 of target DNA molecules. Performance in NHP clinical samples was similar to the one seen in human TPE strains. The newly designed LAMP assays provide proof of concept for a diagnostic tool that enhances yaws clinical diagnosis. It is highly specific for the target DNA and does not require expensive laboratory equipment. Test results can potentially be interpreted with the naked eye, which makes it suitable for the use in remote clinical settings.

Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey

12 April 2018 - 9:00pm

by Djursun Karasartova, Ayse Semra Gureser, Tuncay Gokce, Bekir Celebi, Derya Yapar, Adem Keskin, Selim Celik, Yasemin Ece, Ali Kemal Erenler, Selma Usluca, Kosta Y. Mumcuoglu, Aysegul Taylan-Ozkan

Background

Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey.

Methodology/Principal findings

From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%), R. slovaca (4.5%), R. raoultii (2.2%), R. hoogstraalii (1.9%), R. sibirica subsp. mongolitimonae (1.2%), R. monacensis (0.31%), and Rickettsia spp. (1.2%). In addition, the following pathogens were identified: Borrelia afzelii (0.31%), Anaplasma spp. (0.31%), Ehrlichia spp. (0.93%), Babesia microti (0.93%), Babesia ovis (0.31%), Babesia occultans (3.4%), Theileria spp. (1.6%), Hepatozoon felis (0.31%), Hepatozoon canis (0.31%), and Hemolivia mauritanica (2.1%). All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp.

Conclusions/Significance

Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with a tick infestation should be followed for a variety of pathogens with medical importance.

Development of the multi-epitope chimeric antigen rqTSA-25 from <i>Taenia saginata</i> for serological diagnosis of bovine cysticercosis

12 April 2018 - 9:00pm

by Rafaella P. M. Guimarães-Peixoto, Paulo S. A. Pinto, Marcus R. Santos, Tiago J. Zilch, Paula F. Apolinário, Abelardo Silva Júnior

Bovine cysticercosis is a worldwide distributed zoonosis caused by the larval form of Taenia saginata present in bovine muscles. The diagnosis is based on the postmortem inspection at slaughterhouses and consists of the macroscopic visualization of lesions caused by cysticercosis in muscle sites. However, parasitized animals can pass unnoticed during sanitary inspection. Thus, the objective of this study was to characterize and evaluate the performance of different peptides from different regions of T. saginata for the cysticercosis diagnosis using enzyme-linked immunosorbent assay. We generated and evaluated a new recombinant protein chimera derived from the fusion of different peptides. We selected three distinct regions of T. saginata and predicted six peptides with antigenic potential (EP2–EP7). These peptides were analyzed individually and selected for generating a new chimeric recombinant protein. The new protein was termed rqTSA-25, and its performance rates were: 93.3% sensitivity (confidence interval (CI) = 76–98%), 95.3% specificity (CI = 82–99%), 93% positive predictive value (CI = 76–98%), 95% negative predictive value (CI = 82–99%), and 95% accuracy. In the immunoblot, this protein showed no false positive or false negative reaction. Thus, the use of rqTSA-25 is recommended for the diagnosis of bovine cysticercosis.

Decision support for evidence-based integration of disease control: A proof of concept for malaria and schistosomiasis

12 April 2018 - 9:00pm

by Claire J. Standley, Ellie Graeden, Justin Kerr, Erin M. Sorrell, Rebecca Katz

Author summary

Designing and implementing effective programs for infectious disease control requires complex decision-making, informed by an understanding of the diseases, the types of disease interventions and control measures available, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions and support decision-making, the complexity of current models presents a significant barrier to on-the-ground end users. The picture is further complicated when considering approaches for integration of different disease control programs, where co-infection dynamics, treatment interactions, and other variables must also be taken into account. Here, we describe the development of an application available on the internet with a simple user interface, to support on-the-ground decision-making for integrating disease control, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap. This proof-of-concept method and tool demonstrate significant progress in effectively translating the best available scientific models to support pragmatic decision-making on the ground, with the potential to significantly increase the impact and cost-effectiveness of disease control.

Pages