PLoS Neglected Tropical Diseases News

Subscribe to PLoS Neglected Tropical Diseases News feed PLoS Neglected Tropical Diseases News
A Peer-Reviewed Open-Access Journal
Updated: 1 hour 34 min ago

Strong interferon-gamma mediated cellular immunity to scrub typhus demonstrated using a novel whole cell antigen ELISpot assay in rhesus macaques and humans

11 September 2017 - 9:00pm

by Manutsanun Sumonwiriya, Daniel H. Paris, Piyanate Sunyakumthorn, Tippawan Anantatat, Kemajittra Jenjaroen, Suchintana Chumseng, Rawiwan Im-erbsin, Ampai Tanganuchitcharnchai, Suthatip Jintaworn, Stuart D. Blacksell, Fazle R. Chowdhury, Barbara Kronsteiner-Dobramysl, Prapit Teparrukkul, Robin L. Burke, Eric D. Lombardini, Allen L. Richards, Carl J. Mason, James W. Jones, Nicholas P. J. Day, Susanna J. Dunachie

Scrub typhus is a febrile infection caused by the obligate intracellular bacterium Orientia tsutsugamushi, which causes significant morbidity and mortality across the Asia-Pacific region. The control of this vector-borne disease is challenging due to humans being dead-end hosts, vertical maintenance of the pathogen in the vector itself, and a potentially large rodent reservoir of unclear significance, coupled with a lack of accurate diagnostic tests. Development of an effective vaccine is highly desirable. This however requires better characterization of the natural immune response of this neglected but important disease. Here we implement a novel IFN-γ ELISpot assay as a tool for studying O. tsutsugamushi induced cellular immune responses in an experimental scrub typhus rhesus macaque model and human populations. Whole cell antigen for O. tsutsugamushi (OT-WCA) was prepared by heat inactivation of Karp-strain bacteria. Rhesus macaques were infected intradermally with O. tsutsugamushi. Freshly isolated peripheral blood mononuclear cells (PBMC) from infected (n = 10) and uninfected animals (n = 5) were stimulated with OT-WCA, and IFN-γ secreting cells quantitated by ELISpot assay at five time points over 28 days. PBMC were then assayed from people in a scrub typhus-endemic region of Thailand (n = 105) and responses compared to those from a partially exposed population in a non-endemic region (n = 14), and to a naïve UK population in UK (n = 12). Mean results at Day 0 prior to O. tsutsugamushi infection were 12 (95% CI 0–25) and 15 (2–27) spot-forming cells (SFC)/106 PBMC for infected and control macaques respectively. Strong O. tsutsugamushi-specific IFN-γ responses were seen post infection, with ELISpot responses 20-fold higher than baseline at Day 7 (mean 235, 95% CI 200–270 SFC/106 PBMC), 105-fold higher at Day 14 (mean 1261, 95% CI 1,097–1,425 SFC/106 PBMC), 125-fold higher at Day 21 (mean 1,498, 95% CI 1,496–1,500 SFC/106 PBMC) and 118-fold higher at Day 28 (mean 1,416, 95% CI 1,306–1,527 SFC/106 PBMC). No significant change was found in the control group at any time point compared to baseline. Humans from a scrub typhus endemic region of Thailand had mean responses of 189 (95% CI 88–290) SFC/106 PBMC compared to mean responses of 40 (95% CI 9–71) SFC/106 PBMC in people from a non-endemic region and 3 (95% CI 0–7) SFC/106 PBMC in naïve controls. In summary, this highly sensitive assay will enable field immunogenicity studies and further characterization of the host response to O. tsutsugamushi, and provides a link between human and animal models to accelerate vaccine development.

Development of risk reduction behavioral counseling for Ebola virus disease survivors enrolled in the Sierra Leone Ebola Virus Persistence Study, 2015-2016

11 September 2017 - 9:00pm

by Neetu Abad, Tasneem Malik, Archchun Ariyarajah, Patricia Ongpin, Matthew Hogben, Suzanna L. R. McDonald, Jaclyn Marrinan, Thomas Massaquoi, Anna Thorson, Elizabeth Ervin, Kyle Bernstein, Christine Ross, William J. Liu, Karen Kroeger, Kara N. Durski, Nathalie Broutet, Barbara Knust, Gibrilla F. Deen, on behalf of the Sierra Leone Ebola Virus Persistence Study Group

Background

During the 2014–2016 West Africa Ebola Virus Disease (EVD) epidemic, the public health community had concerns that sexual transmission of the Ebola virus (EBOV) from EVD survivors was a risk, due to EBOV persistence in body fluids of EVD survivors, particularly semen. The Sierra Leone Ebola Virus Persistence Study was initiated to investigate this risk by assessing EBOV persistence in numerous body fluids of EVD survivors and providing risk reduction counseling based on test results for semen, vaginal fluid, menstrual blood, urine, rectal fluid, sweat, tears, saliva, and breast milk. This publication describes implementation of the counseling protocol and the key lessons learned.

Methodology/Principal findings

The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol was developed from a framework used to prevent transmission of HIV and other sexually transmitted infections. The framework helped to identify barriers to risk reduction and facilitated the development of a personalized risk-reduction plan, particularly around condom use and abstinence. Pre-test and post-test counseling sessions included risk reduction guidance, and post-test counseling was based on the participants’ individual test results. The behavioral counseling protocol enabled study staff to translate the study’s body fluid test results into individualized information for study participants.

Conclusions/Significance

The Ebola Virus Persistence Risk Reduction Behavioral Counseling Protocol provided guidance to mitigate the risk of EBOV transmission from EVD survivors. It has since been shared with and adapted by other EVD survivor body fluid testing programs and studies in Ebola-affected countries.

Towards Chagas disease elimination: Neonatal screening for congenital transmission in rural communities

11 September 2017 - 9:00pm

by Pamela Marie Pennington, José Guillermo Juárez, Margarita Rivera Arrivillaga, Sandra María De Urioste-Stone, Katherine Doktor, Joe P. Bryan, Clara Yaseli Escobar, Celia Cordón-Rosales

Chagas disease is a neglected tropical disease that continues to affect populations living in extreme poverty in Latin America. After successful vector control programs, congenital transmission remains as a challenge to disease elimination. We used the PRECEDE-PROCEED planning model to develop strategies for neonatal screening of congenital Chagas disease in rural communities of Guatemala. These communities have persistent high triatomine infestations and low access to healthcare. We used mixed methods with multiple stakeholders to identify and address maternal-infant health behaviors through semi-structured interviews, participatory group meetings, archival reviews and a cross-sectional survey in high risk communities. From December 2015 to April 2016, we jointly developed a strategy to illustratively advertise newborn screening at the Health Center. The strategy included socioculturally appropriate promotional and educational material, in collaboration with midwives, nurses and nongovernmental organizations. By March 2016, eight of 228 (3.9%) pregnant women had been diagnosed with T. cruzi at the Health Center. Up to this date, no neonatal screening had been performed. By August 2016, seven of eight newborns born to Chagas seropositive women had been parasitologically screened at the Health Center, according to international standards. Thus, we implemented a successful community-based neonatal screening strategy to promote congenital Chagas disease healthcare in a rural setting. The success of the health promotion strategies developed will depend on local access to maternal-infant services, integration with detection of other congenital diseases and reliance on community participation in problem and solution definition.

Implementation of a study to examine the persistence of Ebola virus in the body fluids of Ebola virus disease survivors in Sierra Leone: Methodology and lessons learned

11 September 2017 - 9:00pm

by Gibrilla Fadlu Deen, Suzanna L. R. McDonald, Jaclyn E. Marrinan, Foday R. Sesay, Elizabeth Ervin, Anna E. Thorson, Wenbo Xu, Ute Ströher, Patricia Ongpin, Neetu Abad, Archchun Ariyarajah, Tasneem Malik, Hongtu Liu, Christine Ross, Kara N. Durski, Philippe Gaillard, Oliver Morgan, Pierre Formenty, Barbara Knust, Nathalie Broutet, Foday Sahr, on behalf of the Sierra Leone Ebola Virus Persistence Study Group

Background

The 2013–2016 West African Ebola virus disease epidemic was unprecedented in terms of the number of cases and survivors. Prior to this epidemic there was limited data available on the persistence of Ebola virus in survivors’ body fluids and the potential risk of transmission, including sexual transmission.

Methodology/Principal findings

Given the urgent need to determine the persistence of Ebola virus in survivors’ body fluids, an observational cohort study was designed and implemented during the epidemic response operation in Sierra Leone. This publication describes study implementation methodology and the key lessons learned. Challenges encountered during implementation included unforeseen duration of follow-up, complexity of interpreting and communicating laboratory results to survivors, and the urgency of translating research findings into public health practice. Strong community engagement helped rapidly implement the study during the epidemic. The study was conducted in two phases. The first phase was initiated within five months of initial protocol discussions and assessed persistence of Ebola virus in semen of 100 adult men. The second phase assessed the persistence of virus in multiple body fluids (semen or vaginal fluid, menstrual blood, breast milk, and urine, rectal fluid, sweat, saliva, tears), of 120 men and 120 women.

Conclusion/Significance

Data from this study informed national and global guidelines in real time and demonstrated the need to implement semen testing programs among Ebola virus disease survivors. The lessons learned and study tools developed accelerated the implementation of such programs in Ebola virus disease affected countries, and also informed studies examining persistence of Zika virus. Research is a vital component of the public health response to an epidemic of a poorly characterized disease. Adequate resources should be rapidly made available to answer critical research questions, in order to better inform response efforts.

A multi-center field study of two point-of-care tests for circulating <i>Wuchereria bancrofti</i> antigenemia in Africa

11 September 2017 - 9:00pm

by Cédric B. Chesnais, Naomi-Pitchouna Awaca-Uvon, Fatoma K. Bolay, Michel Boussinesq, Peter U. Fischer, Lincoln Gankpala, Aboulaye Meite, François Missamou, Sébastien D. Pion, Gary J. Weil

Background

The Global Programme to Eliminate Lymphatic Filariasis uses point-of-care tests for circulating filarial antigenemia (CFA) to map endemic areas and for monitoring and evaluating the success of mass drug administration (MDA) programs. We compared the performance of the reference BinaxNOW Filariasis card test (ICT, introduced in 1997) with the Alere Filariasis Test Strip (FTS, introduced in 2013) in 5 endemic study sites in Africa.

Methodology

The tests were compared prior to MDA in two study sites (Congo and Côte d'Ivoire) and in three sites that had received MDA (DRC and 2 sites in Liberia). Data were analyzed with regard to % positivity, % agreement, and heterogeneity. Models evaluated potential effects of age, gender, and blood microfilaria (Mf) counts in individuals and effects of endemicity and history of MDA at the village level as potential factors linked to higher sensitivity of the FTS. Lastly, we assessed relationships between CFA scores and Mf in pre- and post-MDA settings.

Principal findings

Paired test results were available for 3,682 individuals. Antigenemia rates were 8% and 22% higher by FTS than by ICT in pre-MDA and in post-MDA sites, respectively. FTS/ICT ratios were higher in areas with low infection rates. The probability of having microfilaremia was much higher in persons with CFA scores >1 in untreated areas. However, this was not true in post-MDA settings.

Conclusions/Significance

This study has provided extensive new information on the performance of the FTS compared to ICT in Africa and it has confirmed the increased sensitivity of FTS reported in prior studies. Variability in FTS/ICT was related in part to endemicity level, history of MDA, and perhaps to the medications used for MDA. These results suggest that FTS should be superior to ICT for mapping, for transmission assessment surveys, and for post-MDA surveillance.

Secondary bacterial infections and antibiotic resistance among tungiasis patients in Western, Kenya

8 September 2017 - 9:00pm

by Ruth Monyenye Nyangacha, David Odongo, Florence Oyieke, Missiani Ochwoto, Richard Korir, Ronald Kiprotich Ngetich, Gladys Nginya, Olipher Makwaga, Christine Bii, Peter Mwitari, Festus Tolo

Tungiasis or jigger infestation is a parasitic disease caused by the female sand flea Tunga penetrans. Secondary infection of the lesions caused by this flea is common in endemic communities. This study sought to shed light on the bacterial pathogens causing secondary infections in tungiasis lesions and their susceptibility profiles to commonly prescribed antibiotics. Participants were recruited with the help of Community Health Workers. Swabs were taken from lesions which showed signs of secondary infection. Identification of suspected bacteria colonies was done by colony morphology, Gram staining, and biochemical tests. The Kirby Bauer disc diffusion test was used to determine the drug susceptibility profiles. Out of 37 participants, from whom swabs were collected, specimen were positive in 29 and 8 had no growth. From these, 10 different strains of bacteria were isolated. Two were Gram positive bacteria and they were, Staphylocccus epidermidis (38.3%) and Staphylococcus aureus (21.3%). Eight were Gram negative namely Enterobacter cloacae (8.5%), Proteus species (8.5%), Klebsiellla species (6.4%), Aeromonas sobria (4.3%), Citrobacter species (4.3%), Proteus mirabillis(4.3%), Enterobacter amnigenus (2.1%) and Klebsiella pneumoniae (2.1%). The methicillin resistant S. aureus (MRSA) isolated were also resistant to clindamycin, kanamycin, erythromycin, nalidixic acid, trimethorprim sulfamethoxazole and tetracycline. All the Gram negative and Gram positive bacteria isolates were sensitive to gentamicin and norfloxacin drugs. Results from this study confirms the presence of resistant bacteria in tungiasis lesions hence highlighting the significance of secondary infection of the lesions in endemic communties. This therefore suggests that antimicrobial susceptibility testing may be considered to guide in identification of appropriate antibiotics and treatment therapy among tungiasis patients.

Geographic patterns and environmental factors associated with human yellow fever presence in the Americas

8 September 2017 - 9:00pm

by Patricia Najera Hamrick, Sylvain Aldighieri, Gustavo Machado, Deise Galan Leonel, Luz Maria Vilca, Sonia Uriona, Maria Cristina Schneider

Background

In the Americas, yellow fever virus transmission is a latent threat due to the proximity between urban and wild environments. Although yellow fever has nearly vanished from North and Central America, there are still 13 countries in the Americas considered endemic by the World Health Organization. Human cases usually occur as a result of the exposure to sylvatic yellow fever in tropical forested environments; but urban outbreaks reported during the last decade demonstrate that the risk in this environment still exists. The objective of this study was to identify spatial patterns and the relationship between key geographic and environmental factors with the distribution of yellow fever human cases in the Americas.

Methodology/Principal findings

An ecological study was carried out to analyze yellow fever human cases reported to the Pan American Health Organization from 2000 to 2014, aggregated by second administrative level subdivisions (counties). Presence of yellow fever by county was used as the outcome variable and eight geo-environmental factors were used as independent variables. Spatial analysis was performed to identify and examine natural settings per county. Subsequently, a multivariable logistic regression model was built. During the study period, 1,164 cases were reported in eight out of the 13 endemic countries. Nearly 83.8% of these cases were concentrated in three countries: Peru (37.4%), Brazil (28.1%) and Colombia (18.4%); and distributed in 57 states/provinces, specifically in 286 counties (3.4% of total counties). Yellow fever presence was significantly associated with altitude, rain, diversity of non-human primate hosts and temperature. A positive spatial autocorrelation revealed a clustered geographic pattern in 138/286 yellow fever positive counties (48.3%).

Conclusions/Significance

A clustered geographic pattern of yellow fever was identified mostly along the Andes eastern foothills. This risk map could support health policies in endemic countries. Geo-environmental factors associated with presence of yellow fever could help predict and adjust the limits of other risk areas of epidemiological concern.

Complete genome sequences of two strains of <i>Treponema pallidum</i> subsp. <i>pertenue</i> from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart

8 September 2017 - 9:00pm

by Michal Strouhal, Lenka Mikalová, Pavla Havlíčková, Paolo Tenti, Darina Čejková, Ivan Rychlík, Sylvia Bruisten, David Šmajs

Background

Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multi-stage disease, endemic in tropical regions of Africa, Asia, Oceania, and South America. To date, four TPE strains have been completely sequenced including three TPE strains of human origin (Samoa D, CDC-2, and Gauthier) and one TPE strain (Fribourg-Blanc) isolated from a baboon. All TPE strains are highly similar to T. pallidum subsp. pallidum (TPA) strains. The mutation rate in syphilis and related treponemes has not been experimentally determined yet.

Methodology/Principal findings

Complete genomes of two TPE strains, CDC 2575 and Ghana-051, that infected patients in Ghana and were isolated in 1980 and 1988, respectively, were sequenced and analyzed. Both strains had identical consensus genome nucleotide sequences raising the question whether TPE CDC 2575 and Ghana-051 represent two different strains. Several lines of evidence support the fact that both strains represent independent samples including regions showing intrastrain heterogeneity (13 and 5 intrastrain heterogeneous sites in TPE Ghana-051 and TPE CDC 2575, respectively). Four of these heterogeneous sites were found in both genomes but the frequency of alternative alleles differed. The identical consensus genome sequences were used to estimate the upper limit of the yaws treponeme evolution rate, which was 4.1 x 10−10 nucleotide changes per site per generation.

Conclusions/Significance

The estimated upper limit for the mutation rate of TPE was slightly lower than the mutation rate of E. coli, which was determined during a long-term experiment. Given the known diversity between TPA and TPE genomes and the assumption that both TPA and TPE have a similar mutation rate, the most recent common ancestor of syphilis and yaws treponemes appears to be more than ten thousand years old and likely even older.

Multiple evolutionary origins of <i>Trypanosoma evansi</i> in Kenya

7 September 2017 - 9:00pm

by Christine M. Kamidi, Norah P. Saarman, Kirstin Dion, Paul O. Mireji, Collins Ouma, Grace Murilla, Serap Aksoy, Achim Schnaufer, Adalgisa Caccone

Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina) for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51) and T. b. rhodesiense (n = 15), including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense.

Spatiotemporal and molecular epidemiology of cutaneous leishmaniasis in Libya

7 September 2017 - 9:00pm

by Ahmad Amro, Hamida Al-Dwibe, Aisha Gashout, Olga Moskalenko, Marlena Galafin, Omar Hamarsheh, Marcus Frohme, Anja Jaeschke, Gabriele Schönian, Katrin Kuhls

Background

Cutaneous leishmaniasis (CL) is a major public health problem in Libya. In this paper, we describe the eco-epidemiological parameters of CL during the armed conflict period from January 2011 till December 2012. Current spatiotemporal distributions of CL cases were explored and projected to the future using a correlative modelling approach. In addition the present results were compared with our previous data obtained for the time period 1995–2008.

Methodology/Principal findings

We investigated 312 CL patients who presented to the Dermatology Department at the Tripoli Central Hospital and came from 81 endemic areas distributed in 10 districts. The patients presented with typical localized lesions which appeared commonly on the face, arms and legs. Molecular identification of parasites by a PCR-RFLP approach targeting the ITS1 region of the rDNA was successful for 81 patients with two causative species identified: L. major and L. tropica comprised 59 (72.8%) and 22 (27.2%) cases, respectively. Around 77.3% of L. tropica CL and 57.7% of L. major CL caused single lesions. Five CL patients among our data set were seropositive for HIV. L. tropica was found mainly in three districts, Murqub (27.3%), Jabal al Gharbi (27.3%) and Misrata (13.7%) while L. major was found in two districts, in Jabal al Gharbi (61%) and Jafara (20.3%). Seasonal occurrence of CL cases showed that most cases (74.2%) admitted to the hospital between November and March, L. major cases from November till January (69.4%), and L. tropica cases mainly in January and February (41%). Two risk factors were identified for the two species; the presence of previously infected household members, and the presence of rodents and sandflies in patient’s neighborhoods. Spatiotemporal projections using correlative distribution models based on current case data and climatic conditions showed that coastal regions have a higher level of risk due to more favourable conditions for the transmitting vectors.

Conclusion

Future projection of CL until 2060 showed a trend of increasing incidence of CL in the north-western part of Libya, a spread along the coastal region and a possible emergence of new endemics in the north-eastern districts of Libya. These results should be considered for control programs to prevent the emergence of new endemic areas taking also into consideration changes in socio-economical factors such as migration, conflicts, urbanization, land use and access to health care.

Advocacy for identifying certain animal diseases as “neglected”

7 September 2017 - 9:00pm

by François Louis Roger, Philippe Solano, Jérémy Bouyer, Vincent Porphyre, David Berthier, Marisa Peyre, Pascal Bonnet

Rapid and accurate interpretation of dengue diagnostics in the context of dengue vaccination implementation: Viewpoints and guidelines issued from an experts group consultation

7 September 2017 - 9:00pm

by Elizabeth A. Hunsperger, Claudia N. Duarte dos Santos, Huong Thi Que Vu, Sutee Yoksan, Vincent Deubel

Deleterious effect of Usutu virus on human neural cells

5 September 2017 - 9:00pm

by Sara Salinas, Orianne Constant, Caroline Desmetz, Jonathan Barthelemy, Jean-Marc Lemaitre, Ollivier Milhavet, Nicolas Nagot, Vincent Foulongne, Florence E. Perrin, Juan-Carlos Saiz, Sylvie Lecollinet, Philippe Van de Perre, Yannick Simonin

In the last decade, the number of emerging Flaviviruses described worldwide has increased considerably. Among them Zika virus (ZIKV) and Usutu virus (USUV) are African mosquito-borne viruses that recently emerged. Recently, ZIKV has been intensely studied due to major outbreaks associated with neonatal death and birth defects, as well as neurological symptoms. USUV pathogenesis remains largely unexplored, despite significant human and veterinary associated disorders. Circulation of USUV in Africa was documented more than 50 years ago, and it emerged in Europe two decades ago, causing massive bird mortality. More recently, USUV has been described to be associated with neurological disorders in humans such as encephalitis and meningoencephalitis, highlighting USUV as a potential health threat. The aim of this study was to evaluate the ability of USUV to infect neuronal cells. Our results indicate that USUV efficiently infects neurons, astrocytes, microglia and IPSc-derived human neuronal stem cells. When compared to ZIKV, USUV led to a higher infection rate, viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology related to USUV infection in order to anticipate the potential threat of USUV emergence.

Use of a novel antigen expressing system to study the <i>Salmonella enterica</i> serovar Typhi protein recognition by T cells

5 September 2017 - 9:00pm

by Rosângela Salerno-Gonçalves, Hervé Tettelin, David Lou, Stephanie Steiner, Tasmia Rezwanul, Qin Guo, William D. Picking, Vishvanath Nene, Marcelo B. Sztein

Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever, is a pathogen of great public health importance. Typhoid vaccines have the potential to be cost-effective measures towards combating this disease, yet the antigens triggering host protective immune responses are largely unknown. Given the key role of cellular-mediated immunity in S. Typhi protection, it is crucial to identify S. Typhi proteins involved in T-cell responses. Here, cells from individuals immunized with Ty21a typhoid vaccine were collected before and after immunization and used as effectors. We also used an innovative antigen expressing system based on the infection of B-cells with recombinant Escherichia coli (E. coli) expressing one of four S. Typhi gene products (i.e., SifA, OmpC, FliC, GroEL) as targets. Using flow cytometry, we found that the pattern of response to specific S. Typhi proteins was variable. Some individuals responded to all four proteins while others responded to only one or two proteins. We next evaluated whether T-cells responding to recombinant E. coli also possess the ability to respond to purified proteins. We observed that CD4+ cell responses, but not CD8+ cell responses, to recombinant E. coli were significantly associated with the responses to purified proteins. Thus, our results demonstrate the feasibility of using an E. coli expressing system to uncover the antigen specificity of T-cells and highlight its applicability to vaccine studies. These results also emphasize the importance of selecting the stimuli appropriately when evaluating CD4+ and CD8+ cell responses.

Control of <i>Phlebotomus argentipes</i> (Diptera: Psychodidae) sand fly in Bangladesh: A cluster randomized controlled trial

5 September 2017 - 9:00pm

by Rajib Chowdhury, Shyla Faria, M. Mamun Huda, Vashkar Chowdhury, Narayan Prosad Maheswary, Dinesh Mondal, Shireen Akhter, Sakila Akter, Rajaul Karim Khan, Shah Golam Nabi, Axel Kroeger, Daniel Argaw, Jorge Alvar, Aditya Prasad Dash, Qamar Banu

Background

A number of studies on visceral leishmaniasis (VL) vector control have been conducted during the past decade, sometimes came to very different conclusion. The present study on a large sample investigated different options which are partially unexplored including: (1) indoor residual spraying (IRS) with alpha cypermethrin 5WP; (2) long lasting insecticide impregnated bed-net (LLIN); (3) impregnation of local bed-nets with slow release insecticide K-O TAB 1-2-3 (KOTAB); (4) insecticide spraying in potential breeding sites outside of house using chlorpyrifos 20EC (OUT) and different combinations of the above.

Methods

The study was a cluster randomized controlled trial where 3089 houses from 11 villages were divided into 10 sections, each section with 6 clusters and each cluster having approximately 50 houses. Based on vector density (males plus females) during baseline survey, the 60 clusters were categorized into 3 groups: (1) high, (2) medium and (3) low. Each group had 20 clusters. From these three groups, 6 clusters (about 300 households) were randomly selected for each type of intervention and control arms. Vector density was measured before and 2, 4, 5, 7, 11, 14, 15, 18 and 22 months after intervention using CDC light traps. The impact of interventions was measured by using the difference-in-differences regression model.

Results

A total of 17,434 sand flies were collected at baseline and during the surveys conducted over 9 months following the baseline measurements. At baseline, the average P. argentipes density per household was 10.6 (SD = 11.5) in the control arm and 7.3 (SD = 8.46) to 11.5 (SD = 20.2) in intervention arms. The intervention results presented as the range of percent reductions of sand flies (males plus females) and rate ratios in 9 measurements over 22 months. Among single type interventions, the effect of IRS with 2 rounds of spraying (applied by the research team) ranged from 13% to 75% reduction of P. argentipes density compared to the control arm (rate-ratio [RR] ranged from 0.25 to 0.87). LLINs caused a vector reduction of 9% to 78% (RR, 0.22 to 0.91). KOTAB reduced vectors by 4% to 73% (RR, 0.27 to 0.96). The combination of LLIN and OUT led to a vector reduction of 26% to 86% (RR, 0.14 to 0.74). The reduction for the combination of IRS and OUT was 8% to 88% (RR, 0.12 to 0.92). IRS and LLIN combined resulted in a vector reduction of 13% to 85% (RR, 0.15 to 0.77). The IRS and KOTAB combination reduced vector densities by 16% to 86% (RR, 0.14 to 0.84). Some intermediate measurements for KOTAB alone and for IRS plus LLIN; and IRS plus KOTAB were not statistically significant. The bioassays on sprayed surfaces or netting materials showed favourable results (>80% mortality) for 22 months (IRS tested for 12 months). In the KOTAB, a gradual decline was observed after 6 months.

Conclusions

LLIN and OUT was the best combination to reduce VL vector densities for 22 months or longer. Operationally, this is much easier to apply than IRS. A cost analysis of the preferred tools will follow. The relationship between vector density (males plus females) and leishmaniasis incidence should be investigated, and this will require estimates of the Entomological Inoculation Rate.

Temporal phylogeography of <i>Yersinia pestis</i> in Madagascar: Insights into the long-term maintenance of plague

5 September 2017 - 9:00pm

by Amy J. Vogler, Voahangy Andrianaivoarimanana, Sandra Telfer, Carina M. Hall, Jason W. Sahl, Crystal M. Hepp, Heather Centner, Genevieve Andersen, Dawn N. Birdsell, Lila Rahalison, Roxanne Nottingham, Paul Keim, David M. Wagner, Minoarisoa Rajerison

Background

Yersinia pestis appears to be maintained in multiple, geographically separate, and phylogenetically distinct subpopulations within the highlands of Madagascar. However, the dynamics of these locally differentiated subpopulations through time are mostly unknown. To address that gap and further inform our understanding of plague epidemiology, we investigated the phylogeography of Y. pestis in Madagascar over an 18 year period.

Methodology/Principal findings

We generated whole genome sequences for 31 strains and discovered new SNPs that we used in conjunction with previously identified SNPs and variable-number tandem repeats (VNTRs) to genotype 773 Malagasy Y. pestis samples from 1995 to 2012. We mapped the locations where samples were obtained on a fine geographic scale to examine phylogeographic patterns through time. We identified 18 geographically separate and phylogenetically distinct subpopulations that display spatial and temporal stability, persisting in the same locations over a period of almost two decades. We found that geographic areas with higher levels of topographical relief are associated with greater levels of phylogenetic diversity and that sampling frequency can vary considerably among subpopulations and from year to year. We also found evidence of various Y. pestis dispersal events, including over long distances, but no evidence that any dispersal events resulted in successful establishment of a transferred genotype in a new location during the examined time period.

Conclusions/Significance

Our analysis suggests that persistent endemic cycles of Y. pestis transmission within local areas are responsible for the long term maintenance of plague in Madagascar, rather than repeated episodes of wide scale epidemic spread. Landscape likely plays a role in maintaining Y. pestis subpopulations in Madagascar, with increased topographical relief associated with increased levels of localized differentiation. Local ecological factors likely affect the dynamics of individual subpopulations and the associated likelihood of observing human plague cases in a given year in a particular location.

Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues

5 September 2017 - 9:00pm

by Lindsay B. Tulloch, Stefanie K. Menzies, Andrew L. Fraser, Eoin R. Gould, Elizabeth F. King, Marija K. Zacharova, Gordon J. Florence, Terry K. Smith

Current drugs to treat African sleeping sickness are inadequate and new therapies are urgently required. As part of a medicinal chemistry programme based upon the simplification of acetogenin-type ether scaffolds, we previously reported the promising trypanocidal activity of compound 1, a bis-tetrahydropyran 1,4-triazole (B-THP-T) inhibitor. This study aims to identify the protein target(s) of this class of compound in Trypanosoma brucei to understand its mode of action and aid further structural optimisation. We used compound 3, a diazirine- and alkyne-containing bi-functional photoaffinity probe analogue of our lead B-THP-T, compound 1, to identify potential targets of our lead compound in the procyclic form T. brucei. Bi-functional compound 3 was UV cross-linked to its target(s) in vivo and biotin affinity or Cy5.5 reporter tags were subsequently appended by Cu(II)-catalysed azide-alkyne cycloaddition. The biotinylated protein adducts were isolated with streptavidin affinity beads and subsequent LC-MSMS identified the FoF1-ATP synthase (mitochondrial complex V) as a potential target. This target identification was confirmed using various different approaches. We show that (i) compound 1 decreases cellular ATP levels (ii) by inhibiting oxidative phosphorylation (iii) at the FoF1-ATP synthase. Furthermore, the use of GFP-PTP-tagged subunits of the FoF1-ATP synthase, shows that our compounds bind specifically to both the α- and β-subunits of the ATP synthase. The FoF1-ATP synthase is a target of our simplified acetogenin-type analogues. This mitochondrial complex is essential in both procyclic and bloodstream forms of T. brucei and its identification as our target will enable further inhibitor optimisation towards future drug discovery. Furthermore, the photo-affinity labeling technique described here can be readily applied to other drugs of unknown targets to identify their modes of action and facilitate more broadly therapeutic drug design in any pathogen or disease model.

An ImmunoSignature test distinguishes <i>Trypanosoma cruzi</i>, hepatitis B, hepatitis C and West Nile virus seropositivity among asymptomatic blood donors

5 September 2017 - 9:00pm

by Michael Rowe, Jonathan Melnick, Robert Gerwien, Joseph B. Legutki, Jessica Pfeilsticker, Theodore M. Tarasow, Kathryn F. Sykes

Background

The complexity of the eukaryotic parasite Trypanosoma (T.) cruzi manifests in its highly dynamic genome, multi-host life cycle, progressive morphologies and immune-evasion mechanisms. Accurate determination of infection or Chagas’ disease activity and prognosis continues to challenge researchers. We hypothesized that a diagnostic platform with higher ligand complexity than previously employed may hold value.

Methodology

We applied the ImmunoSignature Technology (IST) for the detection of T. cruzi-specific antibodies among healthy blood donors. IST is based on capturing the information in an individual’s antibody repertoire by exposing their peripheral blood to a library of >100,000 position-addressable, chemically-diverse peptides.

Principal findings

Initially, samples from two Chagas cohorts declared positive or negative by bank testing were studied. With the first cohort, library-peptides displaying differential binding signals between T. cruzi sero-states were used to train an algorithm. A classifier was fixed and tested against the training-independent second cohort to determine assay performance. Next, samples from a mixed cohort of donors declared positive for Chagas, hepatitis B, hepatitis C or West Nile virus were assayed on the same library. Signals were used to train a single algorithm that distinguished all four disease states. As a binary test, the accuracy of predicting T. cruzi seropositivity by IST was similar, perhaps modestly reduced, relative to conventional ELISAs. However, the results indicate that information beyond determination of seropositivity may have been captured. These include the identification of cohort subclasses, the simultaneous detection and discerning of other diseases, and the discovery of putative new antigens.

Conclusions & significance

The central outcome of this study established IST as a reliable approach for specific determination of T. cruzi seropositivity versus disease-free individuals or those with other diseases. Its potential contribution for monitoring and controlling Chagas lies in IST’s delivery of higher resolution immune-state readouts than obtained with currently-used technologies. Despite the complexity of the ligand presentation and large quantitative readouts, performing an IST test is simple, scalable and reproducible.

SisLeish: A multi-country standardized information system to monitor the status of Leishmaniasis in the Americas

5 September 2017 - 9:00pm

by Ana N. S. Maia-Elkhoury, Samantha Y. O. B. Valadas, Lia Puppim-Buzanovsky, Felipe Rocha, Manuel J. Sanchez-Vazquez

Background

In the Americas, leishmaniasis is endemic in 18 countries, and from 2001 through 2015, 17 countries reported 843,931 cases of cutaneous and mucocutaneous leishmaniasis, and 12 countries reported 52,176 cases of visceral leishmaniasis. A Regional Information System (SisLeish) was created in order to provide knowledge of the distribution and tendency of this disease to analyze and monitor the leishmaniasis status. This article analyses the performance and progress of SisLeish from 2012–2015.

Methodology

The performance of SisLeish was evaluated by country adhesion, data completeness and delay in entering the data, and also by the SWOT technique. Furthermore, we outlined the structure and modus operandi of the system and indicators utilized.

Results

In 2012, only 18% of the countries entered the data in SisLeish before the deadline, where 66.7% and 50% of the countries with autochthonous CL/ML and VL reported their cases to the system, respectively. Whereas in 2015, 59% of the countries reached the deadline, where 94.4% and 58.3% of the countries reported their CL/ML and VL data, respectively. Regarding data completeness, there was great progress for different variables since its launch, such as gender, which had an approximately 100% improvement from 2012 to 2015. The SWOT analysis of SisLeish showed 12 strengths, 11 opportunities, seven weaknesses and six threats.

Conclusions

From 2012–2015 there has been an improvement in the adhesion, quality and data completeness, showing the effort of the majority of the countries to enhance their national database. The SWOT analysis demonstrated that strengths and opportunities exceed weaknesses and threats; however, it highlighted the system frailties and challenges that need to be addressed. Furthermore, it has stimulated several National Programs to advance their surveillance system. Therefore, SisLeish has become an essential tool to prioritize areas, assist in decision-making processes, and to guide surveillance and control actions.

High prevalence of thiamine (vitamin B1) deficiency in early childhood among a nationally representative sample of Cambodian women of childbearing age and their children

5 September 2017 - 9:00pm

by Kyly C. Whitfield, Geoffry Smith, Chhoun Chamnan, Crystal D. Karakochuk, Prak Sophonneary, Khov Kuong, Marjoleine Amma Dijkhuizen, Rathavuth Hong, Jacques Berger, Tim J. Green, Frank Tammo Wieringa

Background

Thiamine deficiency is thought to be an issue in Cambodia and throughout Southeast Asia due to frequent clinical reports of infantile beriberi. However the extent of this public health issue is currently unknown due to a lack of population-representative data. Therefore we assessed the thiamine status (measured as erythrocyte thiamine diphosphate concentrations; eThDP) among a representative sample of Cambodian women of childbearing age (15–49 y) and their young children (6–69 mo).

Methodology/Principle findings

Samples for this cross-sectional analysis were collected as part of a national micronutrient survey linked to the Cambodian Demographic and Health Survey (CDHS) 2014. One-sixth of households taking part in the CDHS were randomly selected and re-visited for additional blood sampling for eThDP analysis (719 women and 761 children). Thiamine status was assessed using different cut-offs from literature.Women were mean (SD) 30 (6) y, and children (46% girls) were 41 (17) mo. Women had lower mean (95% CI) eThDP of 150 nmol/L (146–153) compared to children, 174 nmol/L (171–179; P < 0.001). Using the most conservative cut-off of eThDP < 120 nmol/L, 27% of mothers and 15% of children were thiamine deficient, however prevalence rates of deficiency were as high as 78% for mothers and 58% for children using a cut-off of < 180 nmol/L. Thiamine deficiency was especially prevalent among infants aged 6–12 mo: 38% were deficient using the most conservative cut-off (< 120 nmol/L).

Conclusions/Significance

There is a lack of consensus on thiamine status cut-offs; more research is required to set clinically meaningful cut-offs. Despite this, there is strong evidence of suboptimal thiamine status among Cambodian mothers and their children, with infants <12 mo at the highest risk. Based on eThDP from this nationally-representative sample, immediate action is required to address thiamine deficiency in Cambodia, and likely throughout Southeast Asia.

Pages