PLoS Neglected Tropical Diseases News

Subscribe to PLoS Neglected Tropical Diseases News feed PLoS Neglected Tropical Diseases News
A Peer-Reviewed Open-Access Journal
Updated: 51 min 51 sec ago

Chronic <i>Trichuris muris</i> infection causes neoplastic change in the intestine and exacerbates tumour formation in APC min/+ mice

26 June 2017 - 9:00pm

by Kelly S. Hayes, Laura J. Cliffe, Alison J. Bancroft, Simon P. Forman, Seona Thompson, Cath Booth, Richard K. Grencis

Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris) is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+) mice were infected with this parasite. Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite specific T regulatory response in these mice, the increase in the number of tumours following infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant.

Urban Chikungunya in the Middle East and North Africa: A systematic review

26 June 2017 - 9:00pm

by John M. Humphrey, Natalie B. Cleton, Chantal B. E. M. Reusken, Marshall J. Glesby, Marion P. G. Koopmans, Laith J. Abu-Raddad

Background

The epidemiology of Chikungunya virus (CHIKV) in the Middle East and North Africa (MENA) is not well characterized despite increasing recognition of its expanding infection and disease burden in recent years.

Methodology / Principal findings

Following Cochrane Collaboration guidelines and reporting our findings following PRISMA guidelines, we systematically reviewed records describing the human prevalence and incidence, CHIKV prevalence/infection rates in vectors, outbreaks, and reported cases for CHIKV across the MENA region. We identified 29 human seroprevalence measures, one human incidence study, one study reporting CHIKV infection rates in Aedes, and nine outbreaks and case reports/series reported in the MENA from 1970–2015. Overall, anti-CHIKV antibody or reports of autochthonous transmission were identified from 10 of 23 countries in the MENA region (Djibouti, Egypt, Iraq, Iran, Kuwait, Pakistan, Saudi Arabia, Somalia, Sudan, and Yemen), with seroprevalence measures among general populations (median 1.0%, range 0–43%) and acute febrile illness populations (median 9.8%, range 0–30%). Sudan reported the highest number of studies (n = 11) and the highest seroprevalence among general populations (median 12%, range 0–43%) and undifferentiated acute febrile illness populations (median 18%, range 10–23%). CHIKV outbreaks were reported from Djibouti, Pakistan, Sudan, and Yemen.

Conclusions / Significance

Seroprevalence studies and outbreak reports suggest endemic transmission of urban cycle CHIKV in at least the Red Sea region and Pakistan. However, indications of seroprevalence despite a low quantity of CHIKV epidemiologic research from the region suggests that CHIKV transmission is currently underrecognized.

Effect of praziquantel on the differential expression of mouse hepatic genes and parasite ATP binding cassette transporter gene family members during <i>Schistosoma mansoni</i> infection

26 June 2017 - 9:00pm

by Melissa C. Sanchez, Katina V. Krasnec, Amalia S. Parra, Christian von Cabanlong, Geoffrey N. Gobert, Boris Umylny, Pauline M. Cupit, Charles Cunningham

Schistosomiasis is a chronic parasitic disease caused by sexually dimorphic blood flukes of the genus Schistosoma. Praziquantel (PZQ) is the only drug widely available to treat the disease but does not kill juvenile parasites. Here we report the use of next generation sequencing to study the transcriptional effect of PZQ on murine hepatic inflammatory, immune and fibrotic responses to Schistosoma mansoni worms and eggs. An initial T helper cell 1 (Th1) response is induced against schistosomes in mice treated with drug vehicle (Vh) around the time egg laying begins, followed by a T helper cell 2 (Th2) response and the induction of genes whose action leads to granuloma formation and fibrosis. When PZQ is administered at this time, there is a significant reduction in egg burden yet the hepatic Th1, Th2 and fibrotic responses are still observed in the absence of granuloma formation suggesting some degree of gene regulation may be induced by antigens released from the dying adult worms. Quantitative real-time PCR was used to examine the relative expression of 16 juvenile and adult S. mansoni genes during infection and their response to Vh and PZQ treatment in vivo. While the response of stress genes in adult parasites suggests the worms were alive immediately following exposure to PZQ, they were unable to induce transcription of any of the 9 genes encoding ATP-binding cassette (ABC) transporters tested. In contrast, juvenile schistosomes were able to significantly induce the activities of ABCB, C and G family members, underscoring the possibility that these efflux systems play a major role in drug resistance.

Novel inference models for estimation of abundance, survivorship and recruitment in mosquito populations using mark-release-recapture data

26 June 2017 - 9:00pm

by Daniel Antunes Maciel Villela, Gabriela de Azambuja Garcia, Rafael Maciel-de-Freitas

Background

Experiments involving mosquito mark-release-recapture (MRR) design are helpful to determine abundance, survival and even recruitment of mosquito populations in the field. Obstacles in mosquito MRR protocols include marking limitations due to small individual size, short lifespan, low efficiency in capturing devices such as traps, and individual removal upon capture. These limitations usually make MRR analysis restricted to only abundance estimation or a combination of abundance and survivorship, and often generate a great degree of uncertainty about the estimations.

Methodology/Principal findings

We present a set of Bayesian biodemographic models designed to fit data from most common mosquito recapture experiments. Using both field data and simulations, we consider model features such as capture efficiency, survival rates, removal of individuals due to capturing, and collection of pupae. These models permit estimation of abundance, survivorship of both marked and unmarked mosquitoes, if different, and recruitment rate. We analyze the accuracy of estimates by varying the number of released individuals, abundance, survivorship, and capture efficiency in multiple simulations. These methods can stand capture efficiencies as low as usually reported but their accuracy depends on the number of released mosquitoes, abundance and survivorship. We also show that gathering pupal counts allows estimating differences in survivorship between released mosquitoes and the unmarked population.

Conclusion/Significance

These models are important both to reduce uncertainty in evaluating MMR experiments and also to help planning future MRR studies.

A study of ticks and tick-borne livestock pathogens in Pakistan

26 June 2017 - 9:00pm

by Shahid Karim, Khemraj Budachetri, Nabanita Mukherjee, Jaclyn Williams, Asma Kausar, Muhammad Jawadul Hassan, Steven Adamson, Scot E. Dowd, Dmitry Apanskevich, Abdullah Arijo, Zia Uddin Sindhu, Muhammad Azam Kakar, Raja Muhammad Dilpazir Khan, Shafiq Ullah, Muhammad Sohail Sajid, Abid Ali, Zafar Iqbal

Background

As obligate blood-feeding arthropods, ticks transmit pathogens to humans and domestic animals more often than other arthropod vectors. Livestock farming plays a vital role in the rural economy of Pakistan, and tick infestation causes serious problems with it. However, research on tick species diversity and tick-borne pathogens has rarely been conducted in Pakistan. In this study, a systematic investigation of the tick species infesting livestock in different ecological regions of Pakistan was conducted to determine the microbiome and pathobiome diversity in the indigenous ticks.

Methodology/Principal findings

A total of 3,866 tick specimens were morphologically identified as 19 different tick species representing three important hard ticks, Rhipicephalus, Haemaphysalis and Hyalomma, and two soft ticks, Ornithodorus and Argas. The bacterial diversity across these tick species was assessed by bacterial 16S rRNA gene sequencing using a 454-sequencing platform on 10 of the different tick species infesting livestock. The notable genera detected include Ralstonia, Clostridium, Staphylococcus, Rickettsia, Lactococcus, Lactobacillus, Corynebacterium, Enterobacter, and Enterococcus. A survey of Spotted fever group rickettsia from 514 samples from the 13 different tick species generated rickettsial-specific amplicons in 10% (54) of total ticks tested. Only three tick species Rhipicephalus microplus, Hyalomma anatolicum, and H. dromedarii had evidence of infection with “Candidatus Rickettsia amblyommii” a result further verified using a rompB gene-specific quantitative PCR (qPCR) assay. The Hyalomma ticks also tested positive for the piroplasm, Theileria annulata, using a qPCR assay.

Conclusions/Significance

This study provides information about tick diversity in Pakistan, and pathogenic bacteria in different tick species. Our results showed evidence for Candidatus R. amblyommii infection in Rhipicephalus microplus, H. anatolicum, and H. dromedarii ticks, which also carried T. annulata.

Interleukin-4 receptor alpha is still required after Th2 polarization for the maintenance and the recall of protective immunity to Nematode infection

26 June 2017 - 9:00pm

by Justin Komguep Nono, Hlumani Ndlovu, Nada Abdel Aziz, Thabo Mpotje, Lerato Hlaka, Frank Brombacher

There is currently no vaccine against parasitic nematodes and the knowledge on the mechanisms by which protective immunity against this class of parasites is achieved is continuously expanding. Nematode parasites trigger a host protective type 2 immune response via interleukin-4 receptor alpha (IL-4Rα). Despite this central role, it is not known whether IL-4Rα has a role in maintaining host type 2 immune responses following polarization. To determine the role of IL-4Rα after polarization, we used a recently established strain of rosaCreERT2-/+IL-4Rα-/Lox mice where il4rα gene deletion can be temporally controlled. We show that sustained expression of IL-4Rα is required for the maintenance of type 2 immune responses and protective immunity following interruption after polarization with Nippostrongylus brasiliensis primary infection. Moreover, we show by temporal deletion of IL-4Rα prior to secondary infection with N. brasiliensis that signaling via this receptor drives more efficient recall of type 2 immune responses and clearance of the parasites. Together, this study demonstrates that sustained IL-4Rα mediated signaling is required for the maintenance of anti-nematode type 2 immune responses, describing a novel function for IL-4Rα that is distinct from its role in immune polarization.

Point-of-care testing for <i>Toxoplasma gondii</i> IgG/IgM using <i>Toxoplasma</i> ICT IgG-IgM test with sera from the United States and implications for developing countries

26 June 2017 - 9:00pm

by Ian J. Begeman, Joseph Lykins, Ying Zhou, Bo Shiun Lai, Pauline Levigne, Kamal El Bissati, Kenneth Boyer, Shawn Withers, Fatima Clouser, A. Gwendolyn Noble, Peter Rabiah, Charles N. Swisher, Peter T. Heydemann, Despina G. Contopoulos-Ioannidis, Jose G. Montoya, Yvonne Maldonado, Raymund Ramirez, Cindy Press, Eileen Stillwaggon, François Peyron, Rima McLeod

Background

Congenital toxoplasmosis is a serious but preventable and treatable disease. Gestational screening facilitates early detection and treatment of primary acquisition. Thus, fetal infection can be promptly diagnosed and treated and outcomes can be improved.

Methods

We tested 180 sera with the Toxoplasma ICT IgG-IgM point-of-care (POC) test. Sera were from 116 chronically infected persons (48 serotype II; 14 serotype I-III; 25 serotype I-IIIa; 28 serotype Atypical, haplogroup 12; 1 not typed). These represent strains of parasites infecting mothers of congenitally infected children in the U.S. 51 seronegative samples and 13 samples from recently infected persons known to be IgG/IgM positive within the prior 2.7 months also were tested. Interpretation was confirmed by two blinded observers. A comparison of costs for POC vs. commercial laboratory testing methods was performed.

Results

We found that this new Toxoplasma ICT IgG-IgM POC test was highly sensitive (100%) and specific (100%) for distinguishing IgG/IgM-positive from negative sera. Use of such reliable POC tests can be cost-saving and benefit patients.

Conclusions

Our work demonstrates that the Toxoplasma ICT IgG-IgM test can function reliably as a point-of-care test to diagnose Toxoplasma gondii infection in the U.S. This provides an opportunity to improve maternal-fetal care by using approaches, diagnostic tools, and medicines already available. This infection has serious, lifelong consequences for infected persons and their families. From the present study, it appears a simple, low-cost POC test is now available to help prevent morbidity/disability, decrease cost, and make gestational screening feasible. It also offers new options for improved prenatal care in low- and middle-income countries.

Peridomestic <i>Aedes malayensis</i> and <i>Aedes albopictus</i> are capable vectors of arboviruses in cities

26 June 2017 - 9:00pm

by Ian H. Mendenhall, Menchie Manuel, Mahesh Moorthy, Theodore T. M. Lee, Dolyce H. W. Low, Dorothée Missé, Duane J. Gubler, Brett R. Ellis, Eng Eong Ooi, Julien Pompon

Background

Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas.

Methods

We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection.

Results

We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses.

Conclusions

Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.

Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus

23 June 2017 - 9:00pm

by Mariana Ruiz Silva, José A. Aguilar Briseño, Vinit Upasani, Heidi van der Ende-Metselaar, Jolanda M. Smit, Izabela A. Rodenhuis-Zybert

Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large outbreaks and has expanded its territory causing millions of cases in Asia, Africa and America. The viruses share a common mosquito vector and during the acute phase cause similar flu-like symptoms that can proceed to more severe or debilitating symptoms. The growing overlap in the geographical distribution of these mosquito-borne infections has led to an upsurge in reported cases of DENV/CHIKV co-infections. Unfortunately, at present we have little understanding of consequences of the co-infections to the human host. The overall aim of this study was to define viral replication dynamics and the innate immune signature involved in concurrent DENV and CHIKV infections in human peripheral blood mononuclear cells (PBMCs). We demonstrate that concomitant infection resulted in a significant reduction of CHIKV progeny and moderate enhancement of DENV production. Remarkably, the inhibitory effect of DENV on CHIKV infection occurred independently of DENV replication. Furthermore, changes in type I IFN, IL-6, IL-8, TNF-α, MCP-1 and IP-10 production were observed during concomitant infections. Notably, co-infections led to a significant increase in the levels of TNF-α and IL-6, cytokines that are widely considered to play a crucial role in the early pathogenesis of both viral diseases. In conclusion, our study reveals the interplay of DENV/CHIKV during concomitant infection and provides a framework to investigate viral interaction during co-infections.

Evaluation of different serological assays for early diagnosis of leptospirosis in Martinique (French West Indies)

23 June 2017 - 9:00pm

by Christophe Courdurie, Yohann Le Govic, Pascale Bourhy, Dorothee Alexer, Karine Pailla, Rafaelle Theodose, Raymond Cesaire, Jacques Rosine, Patrick Hochedez, Claude Olive

Background

Leptospirosis is a potentially life-threatening but curable zoonosis whose prognosis depends on accurate and timely diagnosis. Because of its non-specific clinical presentation, laboratory testing is essential to confirm the diagnosis. Here, we aimed to assess the performance of two enzyme-linked immunosorbent assays (ELISAs) (ELISA Serion and ELISA-Hb Pasteur) and one immunodot (GenBio) using quantitative PCR (qPCR) as gold standard, instead of the traditional microscopic agglutination test, for the diagnosis of acute leptospirosis in an endemic area.

Methodology/Principal findings

Between January 2011 and December 2012, a total of 122 patients were diagnosed with leptospirosis, as confirmed by qPCR at the University Hospital of Martinique. Among them, 103 had at least one serum sample available for analysis. Performance of each serological assay was evaluated according to days' post onset of symptoms (DPO) and local species diversity (which included L. santarosai, L. interrogans, L. kirschneri, L. borgpetersenii, L. noguchii, and L. kmetyi). Several thresholds were tested to optimize accuracy. When considering the manufacturer's threshold, the sensitivity of ELISA Serion, ELISA-Hb Pasteur and GenBio immunodot was 75%, 67% and 64%, while specificity was 92%, 98% and 100%, respectively. Moreover, the threshold optimization allowed a significant improvement in specificity for the ELISA Serion from 92% to 99% (p<0.05). During the first 5 DPO, sensitivities were 35%, 30% and 42% for ELISA Serion, ELISA-Hb Pasteur and GenBio immunodot, respectively. However, between 6─10 DPO, these sensitivities dramatically increased to reach 86%, 76% and 67%, respectively. Performances of the three assays were not affected by the species studied.

Conclusions/Significance

All these serological assays showed the potential for diagnosing leptospirosis after (but not before) 6 days’ post onset of symptoms. In a high prevalence setting, where highest specificities are needed, threshold optimizing should be performed for this purpose.

The interplay of climate, intervention and imported cases as determinants of the 2014 dengue outbreak in Guangzhou

22 June 2017 - 9:00pm

by Qu Cheng, Qinlong Jing, Robert C. Spear, John M. Marshall, Zhicong Yang, Peng Gong

Dengue is a fast spreading mosquito-borne disease that affects more than half of the population worldwide. An unprecedented outbreak happened in Guangzhou, China in 2014, which contributed 52 percent of all dengue cases that occurred in mainland China between 1990 and 2015. Our previous analysis, based on a deterministic model, concluded that the early timing of the first imported case that triggered local transmission and the excessive rainfall thereafter were the most important determinants of the large final epidemic size in 2014. However, the deterministic model did not allow us to explore the driving force of the early local transmission. Here, we expand the model to include stochastic elements and calculate the successful invasion rate of cases that entered Guangzhou at different times under different climate and intervention scenarios. The conclusion is that the higher number of imported cases in May and June was responsible for the early outbreak instead of climate. Although the excessive rainfall in 2014 did increase the success rate, this effect was offset by the low initial water level caused by interventions in late 2013. The success rate is strongly dependent on mosquito abundance during the recovery period of the imported case, since the first step of a successful invasion is infecting at least one local mosquito. The average final epidemic size of successful invasion decreases exponentially with introduction time, which means if an imported case in early summer initiates the infection process, the final number infected can be extremely large. Therefore, dengue outbreaks occurring in Thailand, Singapore, Malaysia and Vietnam in early summer merit greater attention, since the travel volumes between Guangzhou and these countries are large. As the climate changes, destroying mosquito breeding sites in Guangzhou can mitigate the detrimental effects of the probable increase in rainfall in spring and summer.

Development of ELISAs for diagnosis of acute typhoid fever in Nigerian children

22 June 2017 - 9:00pm

by Jiin Felgner, Aarti Jain, Rie Nakajima, Li Liang, Algis Jasinskas, Eduardo Gotuzzo, Joseph M. Vinetz, Fabio Miyajima, Munir Pirmohamed, Fatimah Hassan-Hanga, Dominic Umoru, Binta Wudil Jibir, Safiya Gambo, Kudirat Olateju, Philip L. Felgner, Stephen Obaro, D. Huw Davies

Improved serodiagnostic tests for typhoid fever (TF) are needed for surveillance, to facilitate patient management, curb antibiotic resistance, and inform public health programs. To address this need, IgA, IgM and IgG ELISAs using Salmonella enterica serovar Typhi (S. Typhi) lipopolysaccharide (LPS) and hemolysin E (t1477) protein were conducted on 86 Nigerian pediatric TF and 29 non-typhoidal Salmonella (NTS) cases, 178 culture-negative febrile cases, 28 “other” (i.e., non-Salmonella) pediatric infections, and 48 healthy Nigerian children. The best discrimination was achieved between TF and healthy children. LPS-specific IgA and IgM provided receiver operator characteristic areas under the curve (ROC AUC) values of 0.963 and 0.968, respectively, and 0.978 for IgA+M combined. Similar performance was achieved with t1477-specific IgA and IgM (0.968 and 0.968, respectively; 0.976 combined). IgG against LPS and t1477 was less accurate for discriminating these groups, possibly as a consequence of previous exposure, although ROC AUC values were still high (0.928 and 0.932, respectively). Importantly, discrimination between TF and children with other infections was maintained by LPS-specific IgA and IgM (AUC = 0.903 and 0.934, respectively; 0.938 combined), and slightly reduced for IgG (0.909), while t1477-specific IgG performed best (0.914). A similar pattern was seen when comparing TF with other infections from outside Nigeria. The t1477 may be recognized by cross-reactive antibodies from other acute infections, although a robust IgG response may provide some diagnostic utility in populations where incidence of other infections is low, such as in children. The data are consistent with IgA and IgM against S. Typhi LPS being specific markers of acute TF.

Challenges in preparing and implementing a clinical trial at field level in an Ebola emergency: A case study in Guinea, West Africa

22 June 2017 - 9:00pm

by Sara Carazo Perez, Elin Folkesson, Xavier Anglaret, Abdoul-Habib Beavogui, Emmanuel Berbain, Alseny-Modet Camara, Evelyn Depoortere, Annabelle Lefevre, Piet Maes, Kristian Nødtvedt Malme, Jean-Marie Denis Malvy, Sien Ombelet, Geertrui Poelaert, Daouda Sissoko, Alexis Tounkara, Pierre Trbovic, Pascal Piguet, Annick Antierens

Author summary: During the large Ebola outbreak that affected West Africa in 2014 and 2015, studies were launched to evaluate potential treatments for the disease. A clinical trial to evaluate the effectiveness of the antiviral drug favipiravir was conducted in Guinea. This paper describes the main challenges of the implementation of the trial in the Ebola treatment center of Guéckédou. Following the principles of the Good Clinical Research Practices, we explored the aspects of the community’s communication and engagement, ethical conduct, trial protocol compliance, informed consent of participants, ongoing benefit/risk assessment, record keeping, confidentiality of patients and study data, and roles and responsibilities of the actors involved. We concluded that several challenges have to be addressed to successfully implement a clinical trial during an international medical emergency but that the potential for collaboration between research teams and humanitarian organizations needs to be highlighted.

Human lagochilascariasis—A rare helminthic disease

22 June 2017 - 9:00pm

by Dulcinea Maria Barbosa Campos, Alverne Passos Barbosa, Jayrson Araújo de Oliveira, Giovana Galvão Tavares, Pedro Vitor Lemos Cravo, Alejandro Luquetti Ostermayer

Lagochilascariasis is a parasitic disease caused by a helminth of the order Ascaroidea, genus Lagochilascaris that comprises 6 species, among which only Lagochilascaris minor Leiper, 1909, is implicated in the human form of the disease. It is remarkable that the majority of cases of human lagochilascariasis in the Americas have been reported in Brazil. The natural definitive hosts of this parasite seem to be wild felines and canines. Lagochilascariasis is mostly a chronic human disease that can persist for several years, in which the parasite burrows into the subcutaneous tissues of the neck, paranasal sinuses, and mastoid. L. minor exhibits remarkable ability to migrate through the tissues of its hosts, destroying even bone tissue. Fatal cases have been described in which the parasite was found in the lungs or central nervous system. Treatment is often palliative, with recurrence of lesions. This paper summarizes the main features of the disease and its etiologic agent, including prevalence, life cycle, clinical course, and treatment.

Estimating the number of secondary Ebola cases resulting from an unsafe burial and risk factors for transmission during the West Africa Ebola epidemic

22 June 2017 - 9:00pm

by Amanda Tiffany, Benjamin D. Dalziel, Hilary Kagume Njenge, Ginger Johnson, Roselyn Nugba Ballah, Daniel James, Abdoulaye Wone, Juliet Bedford, Amanda McClelland

Background

Safely burying Ebola infected individuals is acknowledged to be important for controlling Ebola epidemics and was a major component of the 2013–2016 West Africa Ebola response. Yet, in order to understand the impact of safe burial programs it is necessary to elucidate the role of unsafe burials in sustaining chains of Ebola transmission and how the risk posed by activities surrounding unsafe burials, including care provided at home prior to death, vary with human behavior and geography.

Methodology/Principal findings

Interviews with next of kin and community members were carried out for unsafe burials in Sierra Leone, Liberia and Guinea, in six districts where the Red Cross was responsible for safe and dignified burials (SDB). Districts were randomly selected from a district-specific sampling frame comprised of villages and neighborhoods that had experienced cases of Ebola. An average of 2.58 secondary cases were potentially generated per unsafe burial and varied by district (range: 0–20). Contact before and after death was reported for 142 (46%) contacts. Caregivers of a primary case were 2.63 to 5.92 times more likely to become EVD infected compared to those with post-mortem contact only. Using these estimates, the Red Cross SDB program potentially averted between 1,411 and 10,452 secondary EVD cases, reducing the epidemic by 4.9% to 36.5%.

Conclusions/Significance

SDB is a fundamental control measure that limits community transmission of Ebola; however, for those individuals having contact before and after death, it was impossible to ascertain the exposure that caused their infection. The number of infections prevented through SDB is significant, yet greater impact would be achieved by early hospitalization of the primary case during acute illness.

The formation of lipid droplets favors intracellular <i>Mycobacterium leprae</i> survival in SW-10, non-myelinating Schwann cells

21 June 2017 - 9:00pm

by Song-Hyo Jin, Sung-Kwan An, Seong-Beom Lee

Leprosy is a chronic infectious disease that is caused by the obligate intracellular pathogen Mycobacterium leprae (M.leprae), which is the leading cause of all non-traumatic peripheral neuropathies worldwide. Although both myelinating and non-myelinating Schwann cells are infected by M.leprae in patients with lepromatous leprosy, M.leprae preferentially invades the non-myelinating Schwann cells. However, the effect of M.leprae infection on non-myelinating Schwann cells has not been elucidated. Lipid droplets (LDs) are found in M.leprae-infected Schwann cells in the nerve biopsies of lepromatous leprosy patients. M.leprae-induced LD formation favors intracellular M.leprae survival in primary Schwann cells and in a myelinating Schwann cell line referred to as ST88-14. In the current study, we initially characterized SW-10 cells and investigated the effects of LDs on M.leprae-infected SW-10 cells, which are non-myelinating Schwann cells. SW-10 cells express S100, a marker for cells from the neural crest, and NGFR p75, a marker for immature or non-myelinating Schwann cells. SW-10 cells, however, do not express myelin basic protein (MBP), a marker for myelinating Schwann cells, and myelin protein zero (MPZ), a marker for precursor, immature, or myelinating Schwann cells, all of which suggests that SW-10 cells are non-myelinating Schwann cells. In addition, SW-10 cells have phagocytic activity and can be infected with M. leprae. Infection with M. leprae induces the formation of LDs. Furthermore, inhibiting the formation of M. leprae-induced LD enhances the maturation of phagosomes containing live M.leprae and decreases the ATP content in the M. leprae found in SW-10 cells. These facts suggest that LD formation by M. leprae favors intracellular M. leprae survival in SW-10 cells, which leads to the logical conclusion that M.leprae-infected SW-10 cells can be a new model for investigating the interaction of M.leprae with non-myelinating Schwann cells.

Incidence and mortality due to snakebite in the Americas

21 June 2017 - 9:00pm

by Jean-Philippe Chippaux

Background

Better knowledge of the epidemiological characteristics of snakebites could help to take measures to improve their management. The incidence and mortality of snakebites in the Americas are most often estimated from medical and scientific literature, which generally lack precision and representativeness.

Methodology/Principal findings

Authors used the notifications of snakebites treated in health centers collected by the Ministries of Health of the American countries to estimate their incidence and mortality. Data were obtained from official reports available on-line at government sites, including those of the Ministry of Health in each country and was sustained by recent literature obtained from PubMed. The average annual incidence is about 57,500 snake bites (6.2 per 100,000 population) and mortality is close to 370 deaths (0.04 per 100,000 population), that is, between one third and half of the previous estimates. The incidence of snakebites is influenced by the abundance of snakes, which is related to (i) climate and altitude, (ii) specific preferences of the snake for environments suitable for their development, and (iii) human population density. Recent literature allowed to notice that the severity of the bites depends mainly on (i) the snake responsible for the bite (species and size) and (ii) accessibility of health care, including availability of antivenoms.

Conclusions/Significances

The main limitation of this study could be the reliability and accuracy of the notifications by national health services. However, the data seemed consistent considering the similarity of the incidences on each side of national boundaries while the sources are distinct. However, snakebite incidence could be underestimated due to the use of traditional medicine by the patients who escaped the reporting of cases. However, gathered data corresponded to the actual use of the health facilities, and therefore to the actual demand for antivenoms, which should make it possible to improve their management.

Esperanza Window Traps for the collection of anthropophilic blackflies (Diptera: Simuliidae) in Uganda and Tanzania

19 June 2017 - 9:00pm

by Adam Hendy, Vincent Sluydts, Taylor Tushar, Jacobus De Witte, Patrick Odonga, Denis Loum, Michael Nyaraga, Thomson Lakwo, Jean-Claude Dujardin, Rory Post, Akili Kalinga, Richard Echodu

There is an increasing need to evaluate the impact of chemotherapeutic and vector-based interventions as onchocerciasis affected countries work towards eliminating the disease. The Esperanza Window Trap (EWT) provides a possible alternative to human landing collections (HLCs) for the collection of anthropophilic blackflies, yet it is not known whether current designs will prove effective for onchocerciasis vectors throughout sub-Saharan Africa. EWTs were deployed for 41 days in northern Uganda and south eastern Tanzania where different Simulium damnosum sibling species are responsible for disease transmission. The relative efficacy of EWTs and HLCs was compared, and responses of host-seeking blackflies to odour baits, colours, and yeast-produced CO2 were investigated. Blue EWTs baited with CO2 and worn socks collected 42.3% (2,393) of the total S. damnosum s.l. catch in northern Uganda. Numbers were comparable with those collected by HLCs (32.1%, 1,817), and higher than those collected on traps baited with CO2 and BG-Lure (25.6%, 1,446), a synthetic human attractant. Traps performed less well for the collection of S. damnosum s.l. in Tanzania where HLCs (72.5%, 2,432) consistently outperformed both blue (16.8%, 563) and black (10.7%, 360) traps baited with CO2 and worn socks. HLCs (72.3%, 361) also outperformed sock-baited (6.4%, 32) and BG-Lure-baited (21.2%, 106) traps for the collection of anthropophilic Simulium bovis in northern Uganda. Contrasting blackfly distributions were observed on traps in Uganda and Tanzania, indicating differences in behaviour in each area. The success of EWT collections of S. damnosum s.l. in northern Uganda was not replicated in Tanzania, or for the collection of anthropophilic S. bovis. Further research to improve the understanding of behavioural responses of vector sibling species to traps and their attractants should be encouraged.

Immunosuppressive and angiogenic cytokine profile associated with <i>Bartonella bacilliformis</i> infection in post-outbreak and endemic areas of Carrion's disease in Peru

19 June 2017 - 9:00pm

by Maria J. Pons, Cláudia Gomes, Ruth Aguilar, Diana Barrios, Miguel Angel Aguilar-Luis, Joaquim Ruiz, Carlota Dobaño, Juana del Valle-Mendoza, Gemma Moncunill

Analysis of immune responses in Bartonella bacilliformis carriers are needed to understand acquisition of immunity to Carrion’s disease and may allow identifying biomarkers associated with bacterial infection and disease phases. Serum samples from 144 healthy subjects from 5 villages in the North of Peru collected in 2014 were analyzed. Four villages had a Carrion’s disease outbreak in 2013, and the other is a traditionally endemic area. Thirty cytokines, chemokines and growth factors were determined in sera by fluorescent bead-based quantitative suspension array technology, and analyzed in relation to available data on bacteremia quantified by RT-PCR, and IgM and IgG levels measured by ELISA against B. bacilliformis lysates. The presence of bacteremia was associated with low concentrations of HGF (p = 0.005), IL-15 (p = 0.002), IL-6 (p = 0.05), IP-10 (p = 0.008), MIG (p = 0.03) and MIP-1α (p = 0.03). In multi-marker analysis, the same and further TH1-related and pro-inflammatory biomarkers were inversely associated with infection, whereas angiogenic chemokines and IL-10 were positively associated. Only EGF and eotaxin showed a moderate positive correlation with bacteremia. IgM seropositivity, which reflects a recent acute infection, was associated with lower levels of eotaxin (p = 0.05), IL-6 (p = 0.001), and VEGF (p = 0.03). Only GM-CSF and IL-10 concentrations were positively associated with higher levels of IgM (p = 0.01 and p = 0.007). Additionally, IgG seropositivity and levels were associated with high levels of angiogenic markers VEGF (p = 0.047) and eotaxin (p = 0.006), respectively. Our findings suggest that B. bacilliformis infection causes immunosuppression, led in part by overproduction of IL-10. This immunosuppression probably contributes to the chronicity of asymptomatic infections favoring B. bacilliformis persistence in the host, allowing the subsequent transmission to the vector. In addition, angiogenic markers associated with bacteremia and IgG levels may be related to the induction of endothelial cell proliferation in cutaneous lesions during chronic infections, being possible candidate biomarkers of asymptomatic infections.

LAMPhimerus: A novel LAMP assay for detecting <i>Amphimerus</i> sp. DNA in human stool samples

19 June 2017 - 9:00pm

by William Cevallos, Pedro Fernández-Soto, Manuel Calvopiña, Cristina Fontecha-Cuenca, Hiromu Sugiyama, Megumi Sato, Julio López Abán, Belén Vicente, Antonio Muro

Background

Amphimeriasis is a fish-borne disease caused by the liver fluke Amphimerus spp. that has recently been reported as endemic in the tropical Pacific side of Ecuador with a high prevalence in humans and domestic animals. The diagnosis is based on the stool examination to identify parasite eggs, but it lacks sensitivity. Additionally, the morphology of the eggs may be confounded with other liver and intestinal flukes. No immunological or molecular methods have been developed to date. New diagnostic techniques for specific and sensitive detection of Amphimerus spp. DNA in clinical samples are needed.

Methodology/Principal findings

A LAMP targeting a sequence of the Amphimerus sp. internal transcribed spacer 2 region was designed. Amphimerus sp. DNA was obtained from adult worms recovered from animals and used to optimize the molecular assays. Conventional PCR was performed using outer primers F3-B3 to verify the proper amplification of the Amphimerus sp. DNA target sequence. LAMP was optimized using different reaction mixtures and temperatures, and it was finally set up as LAMPhimerus. The specificity and sensitivity of both PCR and LAMP were evaluated. The detection limit was 1 pg of genomic DNA. Field testing was done using 44 human stool samples collected from localities where fluke is endemic. Twenty-five samples were microscopy positive for Amphimerus sp. eggs detection. In molecular testing, PCR F3-B3 was ineffective when DNA from fecal samples was used. When testing all human stool samples included in our study, the diagnostic parameters for the sensitivity and specificity were calculated for our LAMPhimerus assay, which were 76.67% and 80.77%, respectively.

Conclusions/Significance

We have developed and evaluated, for the first time, a specific and sensitive LAMP assay for detecting Amphimerus sp. in human stool samples. The procedure has been named LAMPhimerus method and has the potential to be adapted for field diagnosis and disease surveillance in amphimeriasis-endemic areas. Future large-scale studies will assess the applicability of this novel LAMP assay.

Pages